Solutions EMGMT - Exercises 10 October 2006

1.

$$
\sum_{i=0}^{n} 2 i=2 \sum_{i=0}^{n} i=2\left(0+\sum_{i=1}^{n} i\right)=2\left(\sum_{i=1}^{n} i\right)=2\left(\frac{n}{2}(n+1)\right)=n(n+1)
$$

2. (a) Number of operations in algorithm arrayMax (A, n) :
line 1: indexing + assignment: 2
line 2: subtraction + comparison; n times: $2 n$
line 3: subtraction + comparison: for a given $i: n-i+1$ times, so:

$$
\begin{gathered}
\sum_{i=1}^{n-1} 2(n-i+1)=2 \sum_{i=1}^{n-1} n-i+1=2 \sum_{i=2}^{n} i=2\left(\sum_{i=1}^{n} i-1\right)= \\
2\left(\frac{n}{2}(n+1)-1\right)=n(n+1)-2
\end{gathered}
$$

line 4: 2 x indexing + comparison; for a given $i: n-i$ times, so total:

$$
\sum_{i=1}^{n-1} 3(n-i)=3 \sum_{i=1}^{n-1} n-i=3 \sum_{i=1}^{n-1} i=3\left(\frac{n}{2}(n-1)\right)=\frac{3}{2} n(n-1)
$$

line 5: indexing + comparison; for a given $i: n-i$ times, so total:

$$
\sum_{i=1}^{n-1} 2(n-i)=n(n-1)
$$

line 6: indexing + assignment; for a given i : $n-i$ times, so: $n(n-1)$ End of loop line 3: addition + assignment; for a given i : $n-i+1$ times, so total (see summation line 3):

$$
\sum_{i=1}^{n-1} 2(n-i+1)=n(n+1)-2
$$

End of loop line 2: addition + assignment: $2 n$
line 7: return: 1
TOTAL:
$2+2 n+n(n+1)-2+\frac{3}{2} n(n-1)+n(n-1)+n(n-1)+n(n+1)-2+2 n+1=$

$$
n\left(4+2(n+1)+\frac{3}{2}(n-1)\right)-1
$$

(b) Number of operations in algorithm weird(A,n):
line 1: comparison; $n+1$ times: $n+1$
line 2: indexing + assignment; n times: $2 n$
line 3: assignment; n times: n
line 4: comparison; for a given i : at most $\log n+1$ times (this is an overestimate; the precise amount is $\log (n-i)+1$, but this would make the calculations too difficult for the goal of this exercise), so:

$$
\sum_{i=1}^{n} \log n+1=n \log n+n
$$

line 5: comparison; $n \log n$ times: $n \log n$
line 6: 3 x indexing +2 x addition + assignment; for a given i : $4 n \log n$ times, so: $6 \cdot(4 n \log n)=24 n \log n$
line 7: multiplication + assignment; $n \log n$ times: $2 n \log n$
End of loop line 4: no overhead
End of loop line 1: addition + assignment: $2(n+1)$
line 8: return: 1
TOTAL:

$$
\begin{aligned}
n+1+2 n+n+n \log n+ & n+n \log n+24 n \log n+2 n \log n+2(n+1)+1 \\
& =28 n \log n+7 n+4
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
& n^{3}>4 n^{2}+60 n \\
\Rightarrow & n^{3}-4 n^{2}-60 n>0 \\
\Rightarrow & n(n-10)(n+6)>0
\end{aligned}
$$

This is true if all three factors are positive, or if two are negative and one is positive, so $-6<n<0$ or $n<10$. True for all $n \geq n_{0}$ if $n_{0}=11$.
(b)

$$
\begin{aligned}
& 8 n \log n<2 n^{2} \\
& \Rightarrow 4 \log n<n
\end{aligned}
$$

Try for small n that are powers of 2 ;

$$
\begin{gathered}
n=4: 8 \nless 4 \\
n=8: 12 \nless 8 \\
n=16: 16 \nless 16
\end{gathered}
$$

True for all $n \geq n_{0}$ if $n_{0}=17$.
(c)

$$
\begin{gathered}
2^{n}>n^{4} \\
\Rightarrow \log 2^{n}>\log n^{4} \\
\Rightarrow n>4 \log n
\end{gathered}
$$

See b).
4. (a) $c=160, n_{0}=1$
(b) $c=32, n_{0}=1$
(c) $n_{0}=16, c=\frac{1}{10}$
5. $f(n)=n^{4} \log n$
6. $2^{10}-O(1)$
$2^{\log n}=n, 4 n, 3 n+100 \log n-O(n)$,
$n \log n, 4 n \log n+2 n-O(n \log n)$
$n^{2}+10 n-O\left(n^{2}\right)$
$n^{3}-O\left(n^{3}\right)$
$2^{n}-O\left(2^{n}\right)$
7. (a) Choose $c=11$ and $n_{0}=1$. For all $n \geq n_{0}$:

$$
2 n^{3}+9 n^{2}<11 n^{3}=c \cdot n^{3}
$$

(b) Choose $c=\frac{1}{9}$ and $n_{0}=2$. For all $n \geq n_{0}$:

$$
\frac{1}{8} n \log n \geq \frac{1}{9} n \log n=c \cdot n \log n
$$

(c) big-Oh: choose $c=4$ and $n_{0}=1$. For all $n \geq n_{0}$:

$$
2^{n+2}-n=4 \cdot 2^{n}-n<4 \cdot 2^{n}=c \cdot 2^{n}
$$

big-Omega: choose $c=1$ and $n_{0}=1$. For all $n \geq n_{0}$:

$$
2^{n+2}-n=4 \cdot 2^{n}-n>2^{n}
$$

(This inequality is true if $3 \cdot 2^{n}>n$, which indeed holds for all $n \geq 1$.)
8. Given: There are a $c>0$ and an $n_{0} \geq 1$ such that for all $n \geq n_{0}$:

$$
d(n) \leq c \cdot f(n)
$$

To prove: there exists a $c^{\prime}>0$ and an $n_{0}^{\prime} \geq 1$ such that for all $n \geq n_{0}^{\prime}$:

$$
a \cdot d(n) \leq c^{\prime} \cdot f(n)
$$

We choose $c^{\prime}=a \cdot c$. Then for all $n \geq n_{0}$:

$$
a \cdot d(n) \leq a \cdot c \cdot f(n)=c^{\prime} \cdot f(n)
$$

9. False, because we can find a counterexample. Take $d(n)=5 n, e(n)=$ $2 n, f(n)=n+1$, and $g(n)=n$. Now $d(n)-e(n)=3 n$, but this is not $O(n+1-n)=O(1)$.
10. (a) $O\left(n^{2}\right)$
(b) $O(n \log n)$
